CHAPTER

COVARIANCE AND CORRELATION

3.0	What We Need to Know When We Finish This Chapter 57	
3.1	Introduction 58	
3.2	The Sample Covariance 60	
3.3	Understanding the Sample Covariance 66	
3.4	The Sample Correlation 70	
3.5	Another Note about Numerical Presentation 78	
3.6	Another Example 78	
3.7	Conclusion 81	
	Appendix to Chapter 3 82	
	Exercises 85	

3.0 What We Need to Know When We Finish This Chapter

This chapter develops simple ways to measure the *direction of the association* and the *reliability of the association* between two variables in a sample. Here are the essentials.

1. Equation (3.7), section 3.2: The sample covariance is

$$\operatorname{COV}(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{n-1}.$$

It is symmetric with regard to *X* and *Y*.

2. Exercise 3.2: The sample covariance is not invariant to scale:

 $\operatorname{COV}(aX, bY) = ab \operatorname{COV}(X, Y).$

- 3. Section 3.3: A *derivation* begins with an accepted definition and concludes with an implication that is usually not obvious and is often very useful.
- 4. Equation (3.13), section 3.4: The sample correlation coefficient is

$$\operatorname{CORR}(X,Y) = \frac{\operatorname{COV}(X,Y)}{\operatorname{SD}(X)\operatorname{SD}(Y)}.$$

It is symmetric with regard to *X* and *Y*.

5. Exercise 3.4: The sample correlation is invariant to scale.

$$\operatorname{CORR}(aX, bY) = \operatorname{CORR}(X, Y).$$